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‘\ /'\ FRC thrusters: features and

Nz challenges

What is an FRC?

Derived from fusion technology F(i:t:)ldfﬁever_sed
Plasma nfiguration Separatrix

P SRR )

— Efficient plasma formation

— Gas independent (Air, Ar, Xe, Ne)

Cylindrical coil surrounding insulated discharge chamber

High speed transient B field generates azimuthal E field

Neutral gas injected into discharge chamber ionizes

m
Plasma is supersonically accelerated inward creating Axial Fl::-Td Colls C'ﬁfgfd':;_?r':zda' Open Magnetic
compression and heating (further ionization)
Toroidal plasma confinement FRC schematics

Plasma induces current which generates a magnetic field in
opposite direction of applied field

Extreme pressure tends to drive plasma out of discharge
chamber

Difficulties in modeling FRCs
High density, MHD plasma
High temperature, Te ~ 10 — 1000 eV

Non-equilibrium

Chemical (Air) / lonization mechanisms MSNW FRC thruster

Neutral gas entrainment



\ 7 FRC Neutral Entrainment:

N Reaction Rates
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Included: electron impact ionization, single charge exchange, recombination
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@ Nitrogen: air breathing potential @ Neon: high ionization energy
@ Recombination rate (dissociative @ Recombination (not shown) is not
recombination is included) dominates at important
T< 5eV @ SCX rate higher than EII, thus efficiency
@ EII dominates at T>5eV may be high

@ May create problems for entrainment @ Selected for further study
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@ Energy of relative motion is converted into @ n weakly depends on U
thermal, and Tof heavy species increases

@ Thermal relaxation of electrons on

@ Electron T is very important
@ Number of charge exchange reactions

neutrals and ions is fairly slow for T=10eV and U=20km/s was found to
@ Change in T, is primarily related to the linearly increase with neutral density
electron impact ionization reactions @ The dependence of the number of
@ Impact of U on electron temperature ionization reactions on neutral density is
becomes visible only after 100us weaker than linear

@ For any U and T, there is a strong thermal @ Further increase slowed by the depletion
non-equilibrium of high energy electrons



Kinetic Modeling of Neutral
Entrainment in FRC thrusters

Goal: develop a computational capability capable of accurate modeling of FRC
neutral entrainment at kinetic level

@

Celeste3D developed by J. Brackbill at Los Alamos selected as the main production
and development tool: 3D PIC that solves the full set of Boltzmann-Vlasov eqgns
Benefits: kinetic (PIC based and thus amenable to DSMC-like neutral addition),
implicit (large time steps allow modeling of neutral entrainment), full 3D

Physical challenges: plasmoid formation & translation, neutral capability addition,
open boundary conditions, many physical and chemical processes

Numerical challenges: multi-processor domain decomposition parallelization,
adding flexible initial conditions and non-rectangular geometries

Ion density evolutlonoﬁ 1o

L | . Neutral entrainment modules
Arbitrary initial condition capability
Plasmoid / neutral interaction
Open boundary conditions




Modified Celeste3D

» Extended to include neutral transport and collisional relaxation

» Particle-based kinetic capability includes the following collisional
Processes:

= neutral-neutral collisions (VHS model)

= charge exchange reactions (Losev's cross sections)
= neutral-ion elastic collisions (according to Losev)

= the electron impact ionization (SIGLO)

* Hard sphere after-collision scattering is assumed for all these
processes, with the exception of charge exchange reactions, for
which the velocities of neutrals and ions are swapped

@ Species weighting scheme is implemented
» Majorant collision frequency scheme in spatial cells

» Coulomb collision module has been added to Celeste, based on a
particle-weights scheme of Nanbu
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@ 8ms: impact of neutrals is negligible

@ 12ms: moderate, on the order of 5%,
increase in plasma density in the center

@ 16ms: plasma density in the center
decreases due to mass transfer

@ Significant elongation of the plasmoid

@ At 16ps, neutrals loss near the
centerline amounts to about 30%

@ Loss of neutrals = gain in ions



% 0.1 Ny 02 0.3 Neutral d ity d X, rﬁb 50% for th
_ ,m _ @ Neutral dens ecrea ~
» Baseline: modest(~5%) increase in n ba:elrine andlt},l3oo/orfof %S=3%km/s Pere

@ Clear translation of the plasmoid

) L . @ Since change in n. is < change in n_, the
@ Average velocity of initially stationary atter is related to char han
plasmoid is about 3km/s ge exchange

@ U=30km/s: weaker interaction (short t) @ Neutrals loose X momentum after charge
@ Larger n: p transfer, ionization triple exchange, and do not reach right boundary



Summary

i

First step toward accurate modeling of
FRC thruster with neutral entrainment ?

Comparison of ionization and charge
exchange reaction rates indicates that the
use of nitrogen and especially xenon may
be problematic, while neon appears to be a
fairly good propellant

Adiabatic heat bath:

-~ showed that FRC entrainment
proceeds under conditions of strong
thermal and chemical non-
equilibrium; ion, electron, and neutral
temperatures strongly differ, and the
electron distribution function is non-
Maxwellian

-~ Strong impact of electron
temperature on plasma density due
to ionization

-~ Modeling of Coulomb collisions
between electrons is desirable to
properly account for electron high
velocity tail depletion

2D modeling:

= Implicit PIC code Celeste3D
extended to include neutral
transport, plasma-neutral and
neutral-neutral collisions and
Coulomb collisions

= For 5eV and 10eV, strong
entrainment of neutral particles
by a translated plasmoid is
observed as a result of charge
exchange reactions between slow
neutrals and fast moving ions

= Modest increase in plasma
density due to electron impact
jonization

= Increase in neutral density
appears highly beneficial for

thruster efficiency
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\Z FY12 Publications and Outlook
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» 7 journal articles (Physics of Fluids, Applied Physics
Letters, Optics Express, International Journal of
Computational Fluid Dynamics, Vacuum, Journal of
Applied Physics, Journal of Chemical Physics)

* About 15 refereed conference presentations/papers
(AIAA conferences and RGD Symposium)

* Future directions in kinetic modeling of FRC thrusters:

~ Electronic excitation

~ Air breathing

~ 3D and annular configurations
~ RMF, plasmoid formation

~ Parallelization



